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Talk Outline
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Multicast with Network Coding in Directed Networks

[ACLY’2000] A multicast rate h is feasible in a directed
network if and only if it is feasible as a unicast rate to each

receiver separately.
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Some Basic Questions on Network Coding

• When is network coding necessary?

• How much benefit can network coding bring, over routing?

• How and where to encode, in general networks?

• The overhead of network coding?

• How large a field is required for coding?

• . . . . . .
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Basic Questions on Network Coding

• When is network coding necessary?

• How much benefit can network coding bring, over routing?

• How and where to encode, in general networks?

• The overhead of network coding?

• How large a field is required for coding?

The answer often closely depend on the network configuration.

• network topology

• link capacity vector

• source/receiver location
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Small vs. Large Fields

• A large field makes code assignment easy: each receiver
obtains linearly independent info flows.

• A small field leads to efficient encoding and decoding
operations.

• A very small field may also lead to efficient code assign-
ment algorithms.
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Field Size Requirement

Let’s focus on a single multicast session: one source,

multiple receivers.

We need GF (2) for C3,2
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Field Size Requirement

We need GF (3) for C4,2
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Field Size Requirement

We need GF (22) for C5,2.

For Cn,2, we need GF (q) where q ≥ n− 1.
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Current Picture

• Arbitrary networks: no field of constant size is always
sufficient.

• Best known result: a field GF (q) with q ≥ k is sufficient.
(k: # of multicast receivers) (actually . . . )

• In practice: randomized network coding over GF (28) or
GF (216).
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Main Message of This Talk

• Compared to an arbitrary network, a planar network is
often a much better reflection of a network from practice.

– Linear instead of quadratic number of links

– Planar mesh topology instead of totally random con-
nections.

• Small finite fields suffice for network coding in planar

networks, and most practical networks.

• New deterministic code assignment algorithms

– Requiring much smaller fields

– Low (linear) or Moderate (quadratic) time complexity
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Planar Graphs

A planar graph is a graph that can be drawn in a 2-D plane
without crossing edges.

Such a no-corssing drawing is called a planar embedding.

Planar graphs have many nice properties, and allow very
efficient algorithms to be designed, for classic problems such
as max flow, shortest path.
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The VTLWaveNet in Europe

A real-world wide-area/backbone network, deployed

along the surface of the globe, exhibits a natural

planar embedding.

Germany

UK

Italy

Belgium

Milan

Strasbourg

Lyon

Brussels 

Biaches

LowestoftEgham

Crawley

Amiens

A
n
tw

e
rp

Interxion

Paris

Nancy

Basel

Bern

Bordeaux

Toulouse

Routers

VTLWaveNet Network

N
et

he
rla

nd
s

Swizerland

France

15



Tier-1 Optical Fiber Network in China

A canonical planar mesh network topology.
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CERNET-2

The IP-v6 network in China, courtesy of: Yong Cui @ Tsinghua
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Realword Networks Far From Planar

A dense wireless sensor network.

One of the most “non-planar” types of compute network.

(example from [Alzoubi et al. 2003])
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Planar Backbone of Dense Networks

• Executing network protocols (broadcast, multicast etc)
over a very dense network is extremely inefficient.

• A large series of work: extract a planar backbone, then
run network protocols over the planar backbone.
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Example Planar Networks

• Requires coding at many nodes

• Yet coding over GF (2) suffices.
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Another Example Planar Network

• A ‘minimal’ multicast network that requires network
coding for multicasting two flows.

• Yet no particular node must perform encoding.

• Coding over GF (2) suffices.
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The Sufficiency of GF (3) in Planar Networks

Theorem. For multicasting h = 2 flows in a planar network,
coding over GF (3) is sufficient.

Inspired by [FSS 2004] and [EGS 2006].

Conjecture: holds for any h ≥ 2.

22



Sufficiency of GF (3) — subtree decomposition

• Decompose a multicast flow into non-overlapping subtrees

• Each subtree has 1 root, ≥ 1 leaves

• Each root has in-degree 2
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(A planar bipartite network that ‘mimics’ C4,2, and hence
requires GF (3).)
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Sufficiency of GF (3) — node expansion

• Decompose the plane into faces, each containing one
subtree

• If a node has two opposite faces ‘feeding into’ it, perform

expansion

• Prepare for four-coloring a planar network
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Sufficiency of GF (3) — 4-coloring a planar graph

• Every planar graph is 5-colorable ([Kempe 1879]), and
such coloring can be done in O(n) time ([CNS 1981]).

• Every planar graph is 4-colorable ([Appel & Haken 1976]),

and such coloring can be done in O(n2) time ([RSST
1996]).
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Sufficiency of GF (3) — four-coloring a planar graph

• Code assignment over GF (3).

• The four colors: x, y, x+ y, x+ 2y.

(Another planar multicast network requiring GF (3).)
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GF (3) vs. GF (22)

GF (22) may be preferred over GF (3) in practice, for:

• ‘+’ between two packets/flows is simply bit-wise xor

• Code assignment complexity is O(n) instead of O(n2)

• 2-bit symbol representation without wasted symbols
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Randomized Network Coding in Planar Networks

• Randomized network coding has the sameO(n) complexity
as 5-coloring.

• Appears incapable of exploiting planarity.

• Success probability of randomized code assignment for
multicast in random planar networks:

field

size

2 3 5 7 11 23 131 311

success

rate

0.296 0.423 0.582 0.670 0.770 0.881 0.979 0.991
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Necessity of GF (3) - Example # 3
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Outerplanar Multicast Networks

• Outerplanar: all nodes adjacent to a common face

• Contracting the bottleneck link in the butterfly network
leads to an outerplanar network

• Network coding not necessary anymore
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Outerplanar Multicast Networks

Theorem. Network coding is equivalent to routing in an
outerplanar network, for h = 2.

Conjecture: holds for any h ≥ 2.
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Outerplanar networks — face merging

• Subtree decomposition, as usual.

• Face merging.
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Outerplanar networks — two types of regions

• Region 1: boundary faces.

• Region 2: the inner region.

region 2
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Outerplanar networks — coloring region 1

• Coloring faces in region 1, using two colors only.
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Outerplanar networks — coloring region 2

• Coloring chords in region 2, one at a time, without using
a third color.
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The Case of Co-face Terminals

The case between planar and outerplanar: all multicast
terminals lie on a common face.
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Conjecture: Coding over GF (2) is sufficient in this case.
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Conclusion

We proved that, for multicasting h = 2 flows:

• GF (3) is sufficient for general planar networks.

• Routing is sufficient for outerplanar networks.
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Future Work

We conjecture that, for multicasting any h ≥ 2 flows:

• GF (3) is sufficient for general planar networks.

• GF (2) is sufficient for terminal co-face networks.

• Routing is sufficient for outerplanar networks.
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A Graph Minor Perspective to Network Coding

We conjecture that:

• If a directed multicast network G requires network coding

for achieving maximum throughput, then G contains a K4

minor.

• If an udirected multicast network G requires network cod-
ing for achieving maximum throughput, then G contains
a C3,2 minor.

• If a multicast network G requires GF (22) for achieving
maximum throughput, then G contains a K5 minor.

• There exists a function f(q), such that if a multicast

network G requires GF (q), then G contains a Kf(q)

minor, and f(2) = f(3) = 4, f(4) = 5.
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